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Abstract 

The Process Industry has an established practice of crediting IPLs (Independent Protection 
Layers) to meet risk reduction targets as part of LOPA (Layer of Protection Analysis) studies.  
Often the risk targets are calculated to be on the order of 1E-4 per year or lower.  Achieving the 
risk target on paper is one thing, but what is missing from the LOPA calculation is a statement of 
the confidence in the result.  LOPA is an order-of-magnitude method, however, this only reflects 
the tolerance of error, not the tolerance of uncertainty.  It is often stated that LOPA uses generic 
credits that are conservative, thereby implying the LOPA result should be conservative.  By itself 
this statement is dubious because the generic data used in LOPA did not originate from the 
facility for which the statistical inferences are being made (which for frequentist-based statistics 
makes the inference invalid).  Worse, when conservative credits are multiplied together to 
produce a rare-event number, does the conservative property emerge from the combination? 

There is no way to answer this question without performing IPL Validation (i.e., ensuring the 
IPL will function when needed).  However, IPL Validation and related Safety Life-cycle 
methods (e.g. functional safety assessments and cyber-security audits related to barrier integrity) 
are purely qualitative and have no apparent relation to the quantitative risk target.  There is a 
need therefore, to bridge the qualitative results of IPL validation with the quantitative result of 
the associated LOPA calculation, as a way to establish a site-specific confidence level in the risk 
target we are trying to achieve. 

This is where Bayes’ Theorem comes in.  Bayes’ Theorem is an epistemological statement of 
knowledge, versus a statement of proportions and relative frequencies.  It is therefore a method 
that can bridge qualitative knowledge with the rare-event numbers that are intended to represent 
that knowledge. 

Bayes’ Theorem is sorely missing from the toolbox of Process Safety practitioners.  This paper 
will introduce Bayes’ Theorem to the reader and discuss the reasons and applications for using 
Bayes in Process Safety related to IPLs and LOPA.  While intended to be introductory (to not 
discourage potential users), this paper will describe simple ExcelTM based Bayesian calculations 
that the practitioner can begin to use immediately to address issues such as uncertainty, 
establishing confidence intervals, properly evaluating LOPA gaps, and incorporating site specific 
data, all related to IPLs and barriers used to meet LOPA targets. 
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Disclaimer 

The following paper is provided for educational purposes. While the authors have attempted to 
describe the material contained herein as accurately as possible, it must be understood that 
variables in any given application or specification can and will affect the choice of the 
engineering solution for that scenario. All necessary factors must be taken into consideration 
when designing hazard mitigation for any application. aeSolutions and the authors of this paper 
make no warranty of any kind and shall not be liable in any event for incidental or consequential 
damages in connection with the application of this document. 

 
1 Introduction 

If probability is a measure of uncertainty, then inference is used to make a statement of how 
accurate that probability is.  Statistics is the tool by which we make inferences.  Of course, an 
inference itself is subject to the same kind of analysis concerning its accuracy.  And this is how 
we arrive at different kinds of statistics, namely, Frequentist and Bayesian. 

That there exist different kinds of statistics may come as a surprise to many Process Safety 
practitioners, as most of us have never given much thought to the inferences implied in the 
numbers we use.  We excel as Probability Calculators.  This paper is asking you to become a 
Probability Thinker, which is much more important. 

We use many numbers in Process Safety associated with predicting the likelihood of catastrophic 
events (e.g., failure rates, demand rates, incident rates, probability of failure, probability of 
ignition, etc.).  Very rarely do we think about how good (i.e., trustworthy) the numbers are. 

The LOPA calculation presents a unique case in statistical inference.  It is neither practical nor 
ethical to determine rare event frequencies of catastrophic accidents by experiment [1].  Instead, 
the rare event frequency must be inferred.  And it is actually worse than this, because several 
inferences must be made to arrive at the calculated LOPA number (i.e., each of the individual 
probabilities of failure are themselves an inference).  And it is actually still worse than this, 
because the data I am using for the inferences are not from my plant.  In this paper, I am 
interested in my own situation, not everyone else’s. 

This paper takes the position that Bayesian inference is the correct statistical tool to use for 
making process safety decisions regarding catastrophic rare events in my plant.  It is the most 
consistent and rational method to update current beliefs about safe operation, as new data and 
evidence trickles in.  It is the best we can do in a complex changing operating environment, 
where we can’t afford to wait even 10 years to gather enough data to use Frequentist based 
methods. 



There is one more question to answer before we get started.  Does any of this matter?  In other 
words, why do we need a different type of statistics to describe the rare event frequency?  There 
is a simple answer.  An inference on the LOPA number for a given rare event is one of the most 
(arguably the most) important Leading Indicator in your plant.  On paper, calculated with generic 
data, the LOPA calculation is “only the starting point” (as someone once brilliantly but 
unwittingly said).  Paired with Bayes’ methods, the LOPA inference is the best plant-specific 
statement of how safely you are operating with respect to that potential hazard. 

 

2 Frequentist vs. Bayesians.  Why Process Safety Practitioners should be Bayesians. 

Most of us reading this paper have been educated in Frequentist based statistics, learning 
concepts such as the Law of Large Numbers, Maximum Likelihood Estimate, hypothesis testing, 
etc.  Frequentist based statistics assumes that the relative frequency of an event (i.e., how many 
times an event occurs over the sample space) is the same as the probability of the event 
occurring.  Unfortunately, this assumption only applies to situations where many identical trials 
can be repeated (mathematically defined as infinity, but colloquially known as “in the long run”), 
with well-defined outcomes (think games of chance where the odds are known in advance), and 
where a “true” fixed parameter value can be assumed to exist in the population (e.g., average 
height of males versus females taking Calculus 101 for Fall 2019, at Texas A&M). 

For reasons to be discussed, these concepts are not useful to the Process Safety practitioner 
attempting to quantify rare event frequencies.  Ultimately this affects our ability to make good 
decisions regarding risk reduction allocation, as well as having confidence that we are truly 
operating safely.  At a more basic level, Frequentist based statistics is the wrong math to use 
when making inferences about rare events that haven’t happened yet in my plant. 

First, a rare event is a one-off (i.e., a single-case probability).  There is no meaningful 
interpretation of a rare event occurring many times in my plant “in the long run” (one event is 
too many).  Second, in Process Safety, the odds of the rare event outcome are not known in 
advance.  A common gimmick sometimes seen at trade shows is to roll several 10-sided dice 
(“LOPA dice”) to make an analogy to the probability of all barriers failing (or being failed) at the 
same time.  This is misleading, because in Process Safety we do not know in advance what dice 
we are gambling with!  Third, the Frequentist concept of “identical” trials is not valid to Process 
Safety, because of the complexity of our systems (e.g., human and organizational) that change 
with time.  Related to this is the Frequentist notion of a “true” or fixed parameter value (e.g., 
probability of failure, initiating event frequency, rare event frequency, etc.) describing the 
population.  These parameters are not fixed (because over time the population changes). For 
example, there is not a “true” average probability of failure on demand for a safety interlock 
(because the systematic interactions of these safety interlocks are constantly in flux, resulting in 
the total PFD of the system never remaining constant, meaning you can never have a true fixed 
average).  Process Safety parameters are not point values, they are random variables that change 
with time.  Bayesian statistics provides the correct interpretation for this. 



Contrast the Frequentist interpretation of probability to that of the Bayesians.  Bayes’ Theorem 
(also known as Bayes’ Rule) provides the likelihood of occurrence for one-off events (e.g., the 
first roll of the dice with unknown bias, the next task, the next operation, the next demand).  
Bayes’ probability is not defined by long-run averages.  In Bayes’ Rule, qualitative Knowledge 
(e.g., validation) of a process can be used to quantify the uncertainty of our assumptions about 
said process (e.g., the reliability of a barrier).  It helps us quantify the odds of the safety dice 
before we throw them.  The mechanism to do this is the Bayesian Prior.  Bayes’ Rule works with 
sparse data, treats parameters as random variables (not fixed point values), and provides a way to 
update a parameter as new evidence (data) is gathered (as opposed to waiting ad infinitum to 
pool enough data to make a valid Frequentist inference).  Bayes’ rule is also able to account for 
information that may not be showing up in your data. 

I don’t think there is much controversy is stating that Process Safety practitioners should be 
Bayesians.  That said, a traditional Hardware Reliability person (e.g., Safety Instrumented 
System purists) may be resistant to accepting Bayesian thinking.  I suppose if you could strip the 
human element from and focus purely on the hardware widget, if you could doggedly collect 
data on said widget from your plant over several decades, ignoring the fact that the samples 
separated in time may not be “identical” (a requirement of Frequentist methods), then eventually 
you could use Frequentist methods to calculate whatever parameter you need.  However, this is 
not what you need.  You need the parameter now.  And this is just one parameter of many that 
you need to reliably infer the rare event frequency for your plant.  Bayesian methods are the only 
logical and rational way to get there. 

Another way to describe the difference between Frequentists and Bayesians is to look at what 
they mean when they use the word “Uncertainty” (a qualitative English word) [2]. 

To the Frequentist, uncertainty is due to the underlying randomness (i.e., aleatory) of a known 
but indeterminate outcome.  Think of a gaming die, precision manufactured, with equal 
probability of landing on each of 6 sides (i.e., unbiased).  When rolled with sufficient force in 
open space (a necessary qualifier because there are tricksters that can deterministically flip coins 
and roll die to a desired outcome), you don’t know which side it will land on, but you know the 
odds in advance, or you could determine the odds by rolling the die unlimited times (assuming 
the edges of the die do not wear which would change the outcome).  This interpretation has very 
limited application in process safety for the reasons discussed above. 

To a Bayesian, uncertainty is associated with our degree of ignorance.  The more we know about 
a process, the less uncertainty there is.  Take the die example above.  Instead of being handed an 
unopened package labelled “gaming die,” say you found a die on the sidewalk leading to a Bingo 
gaming room, and you had no knowledge of its inherent bias.  Further suppose you forgot to 
bring your lucky die with you, and so you needed to quickly and reliably estimate the bias of the 
die by rolling it a few times (think periodic proof-test) on the sidewalk, and that if you used a 
noticeably biased die in the game room, you would be thrown out (or worse).  This, is Process 
Safety. 



Figure 1 attempts to compare Frequentist and Bayesian interpretations of Uncertainty on a scale 
representing typical Process Safety systems and processes related to quantification of Barrier 
performance. 

 

Figure 1.  Frequentist vs. Bayesian Interpretation of Uncertainty related to systems and processes that 
affect parameters used to calculate Barrier performance.  A significant part of Barrier performance resides 
in the Subjective Uncertainty portion of the scale.  ETTO = Efficiency Thoroughness Trade-offs [3] (e.g., 
“unknown knows”, i.e., things we should know but don’t, or things we know but refuse to acknowledge 
may be a problem). 

 

3 How Bayes’ Rule works 

Bayes’ Theorem (also known as Bayes’ Rule) is a simple formula for updating current beliefs 
based on new evidence (data, quantitative and qualitative) as it trickles in.  Contrast this to 
Frequentist methods, which require a large pool of data all at once, to make a valid inference.  
Depending on the parameter of interest (e.g., initiating event frequency) this could take decades 
to collect enough data to be “statistically significant” (i.e., 95% confidence level), using 
Frequentist methods. (A corollary issue is how Frequentist methods update the “true” parameter 
value when new data/ evidence is collected.  This is the Frequentist “magic” alluded to in Fig. 2.) 

Knowledge is “belief justified.”  So when we talk about “beliefs” in this context, we are 
describing a degree of knowledge. 

What are the “beliefs” we are trying to validate.  Those related to LOPA include for example, 

“I believe the initiating event frequency is x.” 

“I believe the probability of failure on demand is x.” 

“I believe the frequency of this rare event occurring is x.” 

In each case the belief is typically the parameter of interest we are making an inference on.  You 
could also call the belief the hypothesis. 

The genius of Bayes’ Rule comes in two ideas. 

1. Use of a Prior probability (or probability distribution) representing our initial belief “prior 
to” the collection of evidence (data).  Frequentists do not use a Prior. 



2. Inference in the correct direction, that is, of the parameter given (that we know) the data.  
Frequentists make the opposite inference, that is, of the data given (that we know) the 
parameter.  But we don’t know the parameter, that is what we are trying to find! 

Section 5 will develop these two ideas more fully. 

Bayesian inference infers probability directly from data (via the Prior).  Frequentist inference 
assumes the (long-run) relative frequency is probability.  Firstly, a specific plant/ facility often 
doesn’t have long-run frequency data related to process safety events (or, it would take decades 
to gather).  Second, to make the assumption valid (i.e., that relative frequency is probability), 
complex techniques are needed, that often remain hidden to the user.  Which leads to the 
potential for abuse of the methods.  Figure 2 shows this schematically. 

 

 

Figure 2.  Bayesian inference is superior to Frequentist inference because it infers probability directly, 
versus Frequentist inference which requires tests and comparisons to hypothetical samples that may not 
be real.  Because of the hidden complexity, Frequentist methods are open to abuse, as recently cited by 
the American Statistical Association [4]. 

 

A theorem is a mathematical statement that has been proven to be true.  The mechanics of 
computing probabilities using Bayes’ Theorem are described in Figures 3 and 4 [5]. 

 



 

Figure 3.  A Bayesian engine in simplified form.  Prior belief is the starting point typically based on 
calculations using generic data and initial audits and assessments.  As the Bayes engine runs, the 
confidence in the Posterior result increases.  The Posterior is an inference on the future, i.e., between the 
Prior and the next update. 

 

 

Figure 4.  Bayes’ Rule.  Bayes’ Rule works with both probabilities or probability distributions.  
Frequentist methods stop at the Likelihood term and then subject it to a “p-value” test on the data 
assuming the parameter is true.  This is the opposite inference we need.  Calculating the value of the 
denominator determines the complexity of implementing Bayes, ranging from ExcelTM based discrete 
methods, to Markov Chain Monte Carlo (MCMC) computational methods. 

 

4 Process Safety, Bayes, and the Problem of Induction 

Little is known about Thomas Bayes.  He was a Presbyterian minister trained in theology and 
mathematics at the University of Edinburgh.  As a Presbyterian, he was an English Dissenter 
(from the Church of England) and as such faced persecution.  His intertwining of theology and 
mathematics to answer big theological questions based in mathematics such as, “what is the 



conditional probability Jesus rose from the dead given eyewitness testimony?” helped lead him 
to his famous rule, which was published a few years after his death (c. 1761). [6] 

Although Bayes never could definitively prove that “God exists,” or that “Jesus rose from the 
dead,” Bayes’ rule was seen at the time (and today) as a credible challenge to answer David 
Hume’s famous Problem of Induction (i.e., the Future is only knowable when it occurs, at which 
time it has already become the Past).  The Problem of Induction even today is still unsolved.  
Bayes’ Posterior is an attempt to glimpse the Future.  Frequentist methods have no ability to do 
this, relying solely on looking at the Past (data). 

A lot of Process Safety practice involves trying to glimpse the Future.  Think about Leading 
Indicators.  They are not intended to be backward looking (we already know the Past), rather 
what we need is an indication of where we are today and where we are headed tomorrow.  In this 
way too, Leading Indicators are an answer to the Problem of Induction. 

Similarly, the probabilistic calculations we make to infer a rare event frequency are meant to be 
forward looking.  What good would it be to make a statement only on the Past (data)?  We care 
about tomorrow.  Don’t confuse inductive inference as being a prediction.  It is a statement of 
how trustworthy a prediction is. 

All that said, the Bayesian Prior is a key component to making the inference.   

Diaconis and Skyrms say it best [7], 

“…if you were going to risk a lot on the next few trials, it would be prudent for you to 
devote some thought to putting whatever you Know into your Prior.” 

For process safety, the next “few trials” is referring to the next “day’s” Operation, task, or 
demand on a safety critical function.  And this is the basis of Empirical Bayes.  Using 
Frequentist methods to inform the Bayesian Prior.  Figure 5 shows this graphically. 

 

Figure 5.  Empirical Bayes.  The front-end engineering work becomes an important part of selecting the 
Prior Uncertainty distribution.  Depending on the site data update rate for the function, task or operation 
(i.e., of the inferred parameter), the Prior can dominate for years, or be quickly over-taken by the updates. 

 

 

 



5 How to Think like a Bayesian 

Human beings are not good probability calculators.  We have not evolved a probability sense 
organ.  And our use of heuristics (mental short-cuts and other rules-of-thumb applied incorrectly) 
results in systematic bias when making probabilistic estimates.  The Literature is replete with 
examples [8, 9].  The judgements we make in Figure 7 are susceptible to the same. 

Humans are good at collecting relative frequency data on the past (e.g., this event occurred 5 
times out of 20).  Converting this to a probability of occurrence for the next trial (i.e., the 21st) is 
what Bayes’ rule does [10]. 

Bayes’ rule uses two concepts that can help Process Safety practitioners become better 
Probability Thinkers, apart from using the rule itself.  They are: 

1. Making sure you’re using conditional probability, in the correct direction. 
2. Don’t neglect the Prior, also known as the Base Rate. 

Figure 4 shows that the concept of conditional probability is a key part of Bayes’ rule.  Further, 
Figure 4 shows two conditional probabilities, in opposite directions.  First thing to note is, the 
probabilities are not the same. It depends on what direction you are looking.  Four examples will 
be given. 

Example 1 is from Bayes’ Rule itself. 

P(data | parameter).  “The probability of getting the data given that I know the parameter”.  This 
is the conditional probability used by Frequentists.  It’s in the wrong direction!  You don’t know 
the parameter, that is what you’re trying to find!  Also, Frequentists don’t use a Prior, they 
neglect it. 

Example 2 is from Pop Culture. 

In Season 1 Episode 17 of the Cosby Show (1984), titled “Theo and the Joint,” Cliff and Claire 
find a marijuana cigarette in one of Theo’s text books from school.  They get in a discussion of 
whether or not it is his cigarette, and being in his text book, Claire (the lawyer) is ready to 
convict.  But she is getting her conditional probability wrong. 

P(Joint being in Theo’s text book | It’s his Joint).  This is the conditional probability Claire was 
calculating, notice, assuming it’s his joint.  This conditional probability is near 100%. 

P(It’s his Joint | Joint being in Theo’s textbook).  This is the conditional probability Claire 
should have been calculating.  Which is much lower.  As it turns out, it was not Theo’s joint.  A 
classmate had hidden it there when the teacher walked in the classroom.  What Claire was also 
missing was the Prior (her belief before seeing the joint in Theo’s text book, that Theo was a pot 
smoker). 

This example is typical of many problems seen in the Justice System (answering the wrong 
conditional probability).  Ref [11] gives several good examples. 



Example 3 is from Process Safety.  This one is notorious.  Suppose I have a data trend that 
shows the number of incident or accidents, is trending down-ward.  We are operating safer, right!  
Not so fast. 

P(Data trend downward | We are operating safer).  This is the conditional probability most 
people answer in this type of situation, which is in the wrong direction. 

P(We are operating safer | Data trend downward ).  This is the correct conditional probability, 
and depends on many factors (e.g. the Prior being one), that may not be reflected in the data. 

Example 4 is whimsical, but one of my favorite.  Study Figure 6. 

 

Figure 6.  A Twist on the Sunrise Problem from Philosophy. Source: xkcd: A webcomic of romance, 
sarcasm, math, and language.  https://xkcd.com/1132/ 
 

P(‘getting’ the data | the sun has exploded).  Similar to Example 1. 

P(the sun has exploded | the data).  This is the conditional probability you want, and the Bayesian 
knows it!  And again, accounting for the Prior (i.e., a billion+ previous sunrises) should not be 
neglected! 

https://xkcd.com/1132/


6 Converting Qualitative Knowledge (Subjective Belief) to a Prior Confidence Level 

Figure 5 shows how it is possible to use quantitative Frequentist methods to inform the Prior 
distribution.  This is possible, because the Frequentist methods themselves incorporate a 
statement of confidence.  For example, SIL Calc standards (i.e., S84/ 61511) require a 70% 
single-sided confidence on the failure rate data used (i.e., 70% confident that the True value falls 
within the upper bound, i.e., equal to or lower than the value used).  Of course, the problem with 
this is, the data is generic, it did not come from my plant.  So with no further information, the 
actual confidence in the number (in my application) is unknown.  Think about that!  Enter the 
qualitative life-cycle methods (i.e., Validation, Assessments, audits, etc.). 

But how do we convert purely qualitative Knowledge (i.e., from Validation, Assessments, audits, 
etc.) into a number that can inform the Prior distribution?  That is the subject of this section. 

Of all the content in this paper, this is the most subjective.  From Figure 1, we are on the far 
right side of the scale, into Operational and Organizational factors for which there is no generic 
data tables to calculate a parameter (as a Prior).  That said, there are factors (or multipliers) from 
Human Reliability science that can offer guidance to scale a parameter off of some base rate.  
See for example Refs [12, 13, 14, 15, 16].  Still, many operational and organizational factors 
don’t have even a scaling rate, and therefore are purely qualitative. 

The good news is the Bayesian Prior is completely transparent (see Figure 2), such that if you 
don’t agree with my numbers, one, you know it, and two, you can come up with your own that 
you think are better.  Conceptually what we are trying to do is shown in Figure 7. 

 

Figure 7.  Converting Knowledge into a number is an exercise in Subjective Probability.  Site data 
which is quantitative will soon dominate the Prior if the parameter you are making the inference on can be 
easily measured. 

Frequentist Statistics says my confidence increases as the square root of ‘n’ times increase in the 
sample size, e.g., after 4 samples, my confidence level increases by a factor of 2 [9].  If each 



sample is a Bernoulli trial (success/ fail), by the 4th sample my confidence has gone from (for 
example) 50% to 75% (see Figure 8). 

 

Figure 8.  An attempt to quantify qualitative Knowledge.  A 50% base confidence represents a site’s 
attempt to meet industry best practices related to PSM including Barrier management, derived from 
lessons learned of high-profile catastrophic accidents.  The number 50% is a purely subjective assignment 
of probability.  It is meant to approximate the confidence in an average. If a site were missing a particular 
segment of best practice, the initial subjective confidence would be lower. Each sample represents an 
assessment or audit, increasing knowledge about the parameter of interest.  After 4 samples I’ve reached 
75% confidence in the parameter, this assuming each sample represents a Bernoulli trial (success/ fail).  
FSA = Functional Safety Assessment. 

The caveat of Figure 8 is the confidence is increasing for the “knowns” i.e., what you find 
during an assessment.  The same square root of ‘n’ rule does not apply to “unknowns” i.e., what 
you’re not sampling.  Here, confidence increases much more slowly for the absence of findings.  
This is contributory to the Black Swan problem.  For this reason, the Prior uncertainty 
distribution should always allow for unknowns.  This is a qualitative judgement.  There is no 
failure data that will contain information on a Black Swan event (until it happens, then it’s too 
late!). 

7 Bayes’ Rule and LOPA Inference, an Overview. 

Figure 9 and 10 show how we are and are not using the Bayes’ engine to infer the population 
parameter.  Recall from Figure 4 the types of parameters we are interested in for LOPA.  In each 
case, we are concerned with the “right tail” of the distribution, which corresponds to high 
initiating frequency, high probability of failure on demand, etc.  We use a cumulative 
distribution to make a statement that we are equal to or less than a certain value (that corresponds 
to the confidence we want).  In this way, we move decision making from “Pass/ Fail” (as is 
practiced today), to a degree of confidence.  Think of the implications.  The following list 
represents a potential FAIL of the risk target in each case.  Decision making would be improved 
if we instead looked at how the confidence in the desired parameter value has been affected. 

1. I’m off my risk target by a factor of 3. 
Bayes says:  “We don’t need to do anything because my confidence level at that 
increased factor hasn’t changed.” 

2. My risk targets changed an order of magnitude more conservative. 
Bayes says:  “Before we go trigger a massive capital spend to close gaps, let’s evaluate 
how the confidence in meeting the rare event freq. has changed for each scenario.” 



3. My generic SIL calc shows I have a residual gap. 
Bayes says:  “Before I go spend money, I want site specific quantification of said gap.  
Assess and collect data over the year and run a Bayes’ engine.  Then make a decision” 

4. My initiating frequency is higher than assumed in my calculation, but Operations is 
making changes to fix it. 
Bayes says:  “Lower the confidence level in the (assumed) initiating event frequency and 
monitor next year’s operation closely.  Update Bayes’ engine with new data and see 
where we are.” 

5. My Stage 4 FSA (functional safety assessment) found I can’t test this safety function as 
often as I initially assumed. 
Bayes says:  “Redo the SIL calc and input to the Prior. How has the confidence level in 
the target changed?” 
 

 

Figure 9.  What we are NOT doing with Bayes (but you could do). 

 

 

Figure 10.  What we ARE doing with Bayes. 



Figure 11 is intended to show the big picture of how all this would look.  For each IPL 
(independent protection layer) as well as the initiating event frequency, a Bayes engine can be 
built to perform what we show in Figure 10.  An obvious and easy place to begin is with 
inferring the initiating event frequency.  Generic initiating event frequency data typically used in 
LOPA is wildly inaccurate in many cases.  Often times initiating event rates are much greater 
than the generic 1/10 years.  In other cases, certain demands have never been seen in the history 
of the plant.  You may object by saying, “what’s wrong with using a generic Frequentist based 
average?”  Answer:  because you can’t demonstrate you are operating safely based on generic 
averages.  Also, in each case, there are important qualitative insights to be derived from a closer 
quantitative look at the initiating event frequency.  For example, for events happening more 
frequent than assumed, the risk is increased.  Instead of say, once per 10 years, think of rolling 
the LOPA dice once per year instead (add in the element of unknown bias and the situation is 
worse).  For a more rare initiating event, the qualitative take-away is operation’s lack of actual 
practice with the event, decreased situation awareness, and decreased ability to respond when 
things don’t go as planned (e.g., the automated trip doesn’t activate). 

 

Figure 11.  Putting it all together.  Each parameter of the LOPA equation can be inferred using a Bayes’ 
engine.  The result is a cumulative distribution of the rare event frequency, from which the single-sided 
upper confidence limit in the LOPA target can be determined.  This provides a better decision making 
tool than using a single point value with unknown confidence for the site application.  As data is gathered 
and the Bayes’ engines run, confidence in meeting the target will increase.  Using Bayesian inference is 
the most consistent and rational way to incorporate site data to update our belief in meeting rare event 
targets.  This method can be easily implemented in ExcelTM (see NUREG-6823 Chapter 6 for details). 

8 Conclusion 

Process Safety practitioners have the choice of using either Frequentist or Bayesian based 
inference methods.  This paper has laid out the case for Bayes.  Ultimately it is about making 
better decisions related to managing rare event scenarios.  The Bayesian interpretation is where 
we start with a Prior informed by engineering design, assessments, and audits, and then update to 
a Posterior when periodic proof-tests, incident reports, continuing audits, etc. are evaluated, and 
is the only rational and consistent way to build confidence as a degree of belief that we are 
operating safely. 
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